通常,人们习惯将所有 n 位二进制串按照字典序排列,例如所有 2 位二进制串按字典序从小到大排列为:00,01,10,11。
格雷码(Gray Code)是一种特殊的 n 位二进制串排列法,它要求相邻的两个二进制串间恰好有一位不同,特别地,第一个串与最后一个串也算作相邻。
所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。
n 位格雷码不止一种,下面给出其中一种格雷码的生成算法:
1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。
n+1 位格雷码的前 2n 个二进制串,可以由依此算法生成的 n 位格雷码(总共 2n 个 n 位二进制串)按顺序排列,再在每个串前加一个前缀 0 构成。
n+1 位格雷码的后 2n 个二进制串,可以由依此算法生成的 n 位格雷码(总共 2n 个 n 位二进制串)按逆序排列,再在每个串前加一个前缀 1 构成。
综上,n+1 位格雷码,由 n 位格雷码的 2n 个二进制串按顺序排列再加前缀 0,和按逆序排列再加前缀 1 构成,共 2^(n+1) 个二进制串。
另外,对于 n 位格雷码中的 2n 个二进制串,我们按上述算法得到的排列顺序将它们从 0 ∼ 2n−1 编号。
按该算法,2 位格雷码可以这样推出:
已知 1 位格雷码为 0,1。
前两个格雷码为 00,01。后两个格雷码为 11,10。合并得到 00,01,11,10,编号依次为 0 ∼ 3。
同理,3 位格雷码可以这样推出:
已知 2 位格雷码为:00,01,11,10。
前四个格雷码为:000,001,011,010。后四个格雷码为:110,111,101,100。合并得到:000,001,011,010,110,111,101,100,编号依次为 0 ∼ 7。
现在给出 n,k,请你求出按上述算法生成的 n 位格雷码中的 k 号二进制串。
格雷码(Gray Code)是一种特殊的 n 位二进制串排列法,它要求相邻的两个二进制串间恰好有一位不同,特别地,第一个串与最后一个串也算作相邻。
所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。
n 位格雷码不止一种,下面给出其中一种格雷码的生成算法:
1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。
n+1 位格雷码的前 2n 个二进制串,可以由依此算法生成的 n 位格雷码(总共 2n 个 n 位二进制串)按顺序排列,再在每个串前加一个前缀 0 构成。
n+1 位格雷码的后 2n 个二进制串,可以由依此算法生成的 n 位格雷码(总共 2n 个 n 位二进制串)按逆序排列,再在每个串前加一个前缀 1 构成。
综上,n+1 位格雷码,由 n 位格雷码的 2n 个二进制串按顺序排列再加前缀 0,和按逆序排列再加前缀 1 构成,共 2^(n+1) 个二进制串。
另外,对于 n 位格雷码中的 2n 个二进制串,我们按上述算法得到的排列顺序将它们从 0 ∼ 2n−1 编号。
按该算法,2 位格雷码可以这样推出:
已知 1 位格雷码为 0,1。
前两个格雷码为 00,01。后两个格雷码为 11,10。合并得到 00,01,11,10,编号依次为 0 ∼ 3。
同理,3 位格雷码可以这样推出:
已知 2 位格雷码为:00,01,11,10。
前四个格雷码为:000,001,011,010。后四个格雷码为:110,111,101,100。合并得到:000,001,011,010,110,111,101,100,编号依次为 0 ∼ 7。
现在给出 n,k,请你求出按上述算法生成的 n 位格雷码中的 k 号二进制串。