问题 E: 合并果子(数据减弱)

问题 E: 合并果子(数据减弱)

时间限制: 1 Sec  内存限制: 256 MB
提交: 306  解决: 101
[提交][状态][讨论版][命题人:]

题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 (n - 1)(n1) 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 堆果子,数目依次为 1,~2,~91, 2, 9。可以先将 1122 堆合并,新堆数目为 33,耗费体力为 33。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212,耗费体力为 1212。所以多多总共耗费体力为 3+12=153+12=15。可以证明 1515 为最小的体力耗费值。


输入

输入的第一行是一个整数 nn,代表果子的堆数。
输入的第二行有 nn 个用空格隔开的整数,第 ii 个整数代表第 ii 堆果子的个数 a_iai

输出

输出一行一个整数,表示最小耗费的体力值。

样例输入

3 
1 2 9 

样例输出

15

提示


数据范围



100%的数据:1<=n<=10^5  1<=ai<=10^5

[提交][状态]